

#### FERMILAB-SLIDES-20-018-DI-LDRD-TD



# **Cryocooler conduction-cooled SRF cavities for compact** particle accelerators

Ram C. Dhuley on behalf of Fermilab's conduction-cooled SRF project team Accelerator Physics and Technology Seminar, Fermilab 02 June 2020

#### IARC at Fermilab

**Mission:** Partner with industry to exploit technology developed in the pursuit of science to create the next generation of industrial accelerators, products, and new applications.

#### **Partners**

- MWRD of Greater Chicago
- US Army Corps of Engineers (ERDC)
- Northern Illinois University
- Euclid Beamlabs
- General Atomics

#### **Facilities**

- Several 4 K cryocoolers, cryogenic test stands,
   LHe refrigerator
- LLRF system, solid state RF power source (20 kW)
- 9 MeV, 1 kW electron accelerator (A2D2)

#### Contact

Dr. Mauricio Suarez

suarez@fnal.gov

Deputy Head of Technology Development and Industry Engagements

https://iarc.fnal.gov/



### Outline

## Motivation: SRF accelerators for industrial applications

- Potential applications and the scope of SRF accelerators
- Cryocooler conduction-cooled SRF cavities
  - Development at Fermilab
  - First results
  - Ongoing R&D
- Fermilab's conduction-cooled SRF accelerator program
- New R&D being facilitated by conduction-cooled SRF
- Summary and outlook



# Industrial applications and the scope of SRF accelerators

# Electron beam radiation processing applications

- Water/sludge/medical waste decontamination
- Flue gas cleanup
- Medical device sterilization
- Strengthening of asphalt pavements

#### Radiation processing requires:

- Beam energy: 0.5-10 MeV
- Beam power: >>100 kW

#### Industrial settings demand:

- Low capital, operating expense
- Robust, reliable, turnkey operation

http://accelconf.web.cern.ch/AccelConf/napac2016/talks/thb3io02\_talk.pdf

A <u>meter-long SRF linac</u> (niobium or Nb<sub>3</sub>Sn cavities) operating at <u>10 MV/m</u> can provide the required energy

Small SRF surface resistance enables <u>continuous wave (cw)</u> operation that can lead to high beam power

At present, SRF accelerators are designed to operate with complex liquid helium cryogenic systems!







# Simplifying SRF cryogenics for industrial settings

#### Nb<sub>3</sub>Sn cavity dissipates ~6-8 W @ ~4.5 K

(1 m x 10 MV/m cw; 650 MHz/1.3 GHz)



### Use commercial, off-the-shelf <u>4 K cryocoolers</u>

(helium plant not required)





#### Cryocoolers offer

- Closed cycle cooling at ~45 K and ~4 K
- Compact, small footprint
- Reliability (MTBM > 2 years non-stop operation)
- Turnkey operation (no trained operator needed, turn ON/OFF with push of a button)



# Simplifying SRF cryogenics for industrial settings

#### Remove cavity dissipation via thermal conduction (conduction cooling)

(conventional liquid helium bath not required)





#### Absence of cryogenic liquids

- Compact, simplified construction
- No pressure vessel safety concerns
- Facilitates deployment in remote locations



# Concept of a cryocooler conduction-cooled SRF accelerator

R.D. Kephart, *SRF2015*, 2015. <a href="https://accelconf.web.cern.ch/srf2015/papers/frba03.pdf">https://accelconf.web.cern.ch/srf2015/papers/frba03.pdf</a>
Patents: US10390419B2, US10070509B2, US9642239B2



# All of the cryogenics integrated into the module

- Cryocooler 4 K stage cools the SRF cavity
- Cryocooler 45 K stage cools thermal shield/intercept
- Enclosed in a simple vacuum vessel



# Conduction-cooled SRF cavity development at Fermilab

 Supported by Fermilab Laboratory Directed Research and Development (LDRD) 2017-2019



# Goal: To demonstrate 10 MV/m cw on an SRF cavity with cryocooler conduction-cooling

#### Our choices:

- Single cell 650 MHz, Nb<sub>3</sub>Sn coated niobium cavity
- Cryomech PT420 cryocooler
   (2 W @ 4.2 K with 55 W @ 45 K)
- High purity aluminum for the conduction cooling link





# Design for conduction cooling

- Cavity preparation for attaching the cooling link
- Characterization of thermal resistance
  - thermal contact resistance of aluminumniobium at the link-cavity joint
  - bulk thermal resistivity of the high purity aluminum
  - aluminum-aluminum contact resistance
- Mechanical design
- Verification via FEA simulations





# Cavity preparation for thermal link attachment

Need a thermal link attachment point on the niobium cavity shell

Dissipation is prominent near the equator

Solution: E-beam weld niobium cooling rings near the equator





# Cavity preparation for thermal link attachment

#### Joint design for e-beam welding



#### Weld development

- Full penetration for thermal conductivity
- Avoid weld beads on the RF surface



#### Single cell cavity ready for conduction cooling





12

#### Characterization of thermal resistance

1. Cavity-link (niobium-aluminum) bolted thermal contacts





R.C. Dhuley, M.I. Geelhoed, J.C.T. Thangaraj, *Cryogenics*, 2018. https://doi.org/10.1016/j.cryogenics.2018.06.003



Selected design: 4 mil indium, ~4 kN force



#### Characterization of thermal resistance

#### 2. Thermal characterization of high purity aluminum

Setup for measuring 4 K thermal conductivity, contact resistance





# Design of the conduction link design

3. Mechanical design and simulation verification





J. Thompson and R.C. Dhuley, 2019. <a href="https://doi.org/10.2172/1546003">https://doi.org/10.2172/1546003</a>
R.C. Dhuley et al., IEEE Trans. Appl. Supercond., 2019. <a href="https://doi.org/10.1109/TASC.2019.2901252">https://doi.org/10.1109/TASC.2019.2901252</a>



# Conduction-cooled SRF cavity measurement setup at Fermilab

R.C. Dhuley et al., IOP Conf. Ser.: Mat. Sci. Eng., 2020 (to appear). https://www.osti.gov/biblio/1572517





# Conduction-cooled SRF cavity measurement setup at Fermilab







17

### Cavity processing and test sequence

Niobium cavity with conduction rings



RF check, bulk EP, 800 °C bake, light EP, HPR

2 K VTS test of niobium cavity (check 10 MV/m cw)







Cavity on HPR tool

Coat with Nb<sub>3</sub>Sn





4.4 K VTS test of Nb<sub>3</sub>Sn cavity (baseline test)



Warm-up, connect thermal link

Conduction-cooled tests of Nb<sub>3</sub>Sn cavity



Cavity dressed with Al link



# First results of conduction-cooled Nb<sub>3</sub>Sn cavity

R. Dhuley, S. Posen, M. Geelhoed, O. Prokofiev, J. Thangaraj, *Supercond. Sci. Technol.*, 2020. https://doi.org/10.1088/1361-6668/ab82f0





#### Fermilab VTS baseline with 4.5 K LHe

- $Q_0 = 3x10^{10}$  at  $E_{acc} = 1$  MV/m
- max  $E_{acc}$  = 12 MV/m

#### **Conduction cooling**

- $Q_0 = 5x10^9$  at  $E_{acc} = 1 \text{ MV/m}$
- max  $E_{acc}$  = 5.5 MV/m



disc springs ~30 G led to large flux trapping

#### Conduction cooling with <1 G disc springs

- $Q_0 = 1 \times 10^{10}$  at  $E_{acc} = 1$  MV/m
- $\max E_{acc} = 6.6 \text{ MV/m}$



# Conduction link performance, cavity thermal stability

Comparison of measured and simulated link thermal conductance



Computed cavity surface temperature at steady state with 6.6 MV/m cw

- Ring temperature = 7.2 K (boundary condition)
- RF dissipation = 4 W (boundary condition)





20

# Ongoing research to achieve 10 MV/m

# Improving magnetic hygiene to reduce trapped flux



Active compensation, additional shield

#### Flux expulsion by slow/fast cooldown

- Natural "slow" cooldown
- Turn OFF cryocooler -> warm up above 18 K
- Turn ON cryocooler for "fast" cooldown

#### Improving Nb<sub>3</sub>Sn coating procedure



S. Posen et al., https://accelconf.web.cern.ch/srf2019/papers/thfub1.pdf



# Conduction-cooled SRF accelerator program at Fermilab

- Prototype development: efficacy and performance demonstration
- Design studies for an industrial scale machine



# Prototype electron accelerator development (1.6 MeV, 20 kW)

Supported by US Army Corps of Engineers (ERDC)



 $E_{acc} \approx 4.7 \text{ MV/m}$ ; Cryo load  $\approx 3.8 \text{ W} @ 4.5 \text{ K}$ 





23

# Design and economics studies of industrial scale SRF electron accelerators (10 MeV, >>100 kW)

Supported by DOE HEP Accelerator Stewardship Program

| Phase (year) /<br>Fermilab PI        | Activity                                                                     | Stewardship partner        |
|--------------------------------------|------------------------------------------------------------------------------|----------------------------|
| I (2016-17) /<br>R.D. Kephart        | Conceptual design of a 250 kW and economic analysis of a 1 MW facility       | MWRD of Greater<br>Chicago |
| II (2017-18) /<br>J.C.T. Thangaraj   | Conceptual design of a 1 MW module and economic analysis of a 10 MW facility | MWRD of Greater<br>Chicago |
| III (2019-in progress) / R.C. Dhuley | Practical cryogenic design and cost analysis of a 1 MW module                | General Atomics            |

Design reports available at: https://iarc.fnal.gov/publications/



# New research facilitated by Fermilab's conduction-cooled SRF cavity project



# Development of SRF based field emission sources

PI: Dr. Philippe Piot (NIU/ANL)

#### NIU-Fermilab collaboration

- field emission cathode with nanostructured surface located in high e-field region of an SRF cavity
- use cw operation to produce high repetition rate field emission (high  $I_{avg}$ )



Cathode surface e-field (650 MHz cavity, 1.6 W cryo-cooling)



Mohsen et al., http://accelconf.web.cern.ch/ipac2019/papers/tupts083.pdf





# Method for "in situ" measurements of unloaded Q-factor of an SRF resonator installed in a cryomodule

PI: Dr. Chunguang Jing (Euclid Beamlabs)

- In modern SRF cavities  $Q_0$  can be as high as  $10^{10}$ - $10^{11}$  ( $\beta \ge 10^3$ ) so that the reflection R is near to 1 in a whole frequency band, which makes it very challenging to monitor the Q factor during the operation.
- Funded through DOE SBIR program (SBIR Phase I Grant #DE-SC0019687), we proposed to use the dual frequency method to measure the Q<sub>0</sub> in its operation setup.

#### Proposed measurement configuration and simulation



The 1<sup>st</sup> Proof of Concept experiment in 2019 at Fermilab IARC (650 MHz SRF cavity with conduction cooling)







27

# Summary and outlook

Cryocooler conduction cooling offers simple, reliable cryogenics for developing industrial SRF e-beam accelerators

#### Conduction-cooled SRF R&D at Fermilab

- first demonstration >6.5 MV/m cw on a 650 MHz Nb<sub>3</sub>Sn coated cavity
- prototype development and high power accelerators designs in progress

#### Cryocooler conduction cooling can greatly expand access to SRF

 university groups, industries can embark on in-house SRF R&D without needing full stack helium cryogenic systems



# Acknowledgement

This presentation has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

- Conduction-cooled SRF demonstration: J.C.T. Thangaraj, Fermilab LDRD
- Nb₃Sn development: S. Posen Fermilab LDRD, S. Posen DOE Early Career Award
- Accelerator design studies: R.C. Dhuley HEP Accelerator Stewardship Award
- Compact SRF accelerator development: US Army Corps of Engineers (ERDC)















